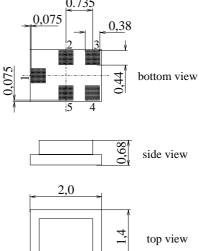


SAW Components


Data Sheet B7845

SAW Components	B7845
Low-Loss Filter for Mobile Communication	881,5 MHz
Data Sheet Seatures	Chip sized SAW package QCS5E
 Low-loss RF filter for mobile telephone GSM850 systems, receive path Very low insertion attenuation Low amplitude ripple 	

- Low amplitude ripple
- Usable passband 25 MHz
- Unbalanced to balanced operation
- \blacksquare Impedance transformation from 50 $\Omega\,$ to 150 $\Omega\,$
- Suitable for GPRS Class 1 to 12
- Ceramic Package for Surface Mounted Technology (SMT)


Terminals ■ Ni, gold-plated

Dimensions in mm, approx. weight 0,007 g

Pin configuration

1	Input, unbalanced		
3, 4	Output, balanced		

2, 5 Case ground

Туре	Ordering code	Marking and Package	Packing
		according to	according to
B7845	B39881-B7845-K410	C61157-A7-A131	F61074-V8151-Z000

Electrostatic Sensitive Device (ESD)

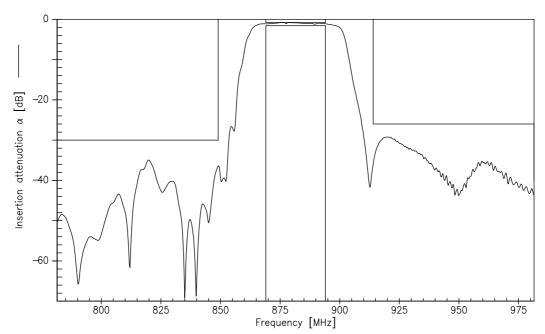
Maximum ratings

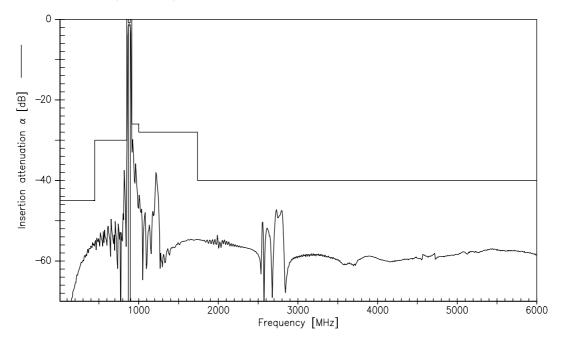
Operable temperature range	Т	- 40 / + 85	°C	
Storage temperature range	T _{stg}	– 40 / + 85	°C	
DC voltage	V _{DC}	5	V	
ESD voltage	V_{ESD}^{*}	100*	V	machine model, 10 pulses
Input power at	P _{IN}	15	dBm	peak power of GSM signal,
GSM850, GSM900				duty cycle 4:8
GSM1800 and GSM1900				
Tx bands				

2

* acc. to JESD22-A115A (Machine Model), 10 negative & 10 positive pulses

Sep 15, 2005


SAW Components							B7845
Low-Loss Filter for Mobile	Commun	icatio	n			881	,5 MHz
Data Sheet							
Characteristics							
Operating temperature range: Terminating source impedance: Terminating load impedance:		Z_{S}	= 25 °C = 50 Ω = 150 Ω		(balanced)		
				min.	typ.	max.	
Center frequency			f _C		881,5	_	MHz
Manimum in a stirm attended	_						
Maximum insertion attenuation	n 894,0	MHz	α_{max}	_	1,2	1,5	dB
000,0	004,0				1,2	1,5	uD
Amplitude ripple (p-p)			Δα				
869,0	894,0	MHz		_	0,4	0,6	dB
Input VSWR	894,0	MHz			1 5	1 0	
889,0	094,0			_	1,5	1,8	
Output VSWR							
-	894,0	MHz		_	1,5	1,8	
Attenuation							
	434,0	MHz		45	54	—	dB
	447,0	MHz		45	52	_	dB
	849,0	MHz		30	35		dB
	1000,0	MHz		26	29	_	dB
1000,0		MHz		28	38	_	dB
1738,0	6000,0	MHz		40	46	_	dB
Amplitude balance (S_{31}/S_{21})							
	894,0	MHz		-1,0	-0,5 0,0	1,0	dB
Phase balance $(\phi(S_{31})-\phi(S_{21})+1$							
869,0 .	894,0	MHz		-5	-3,0 1,5	5	degree
Common mode suppression			S _{sc12}				
	894,0	MHz	Sc12	20	26	_	dB
,	995,0	MHz		20	26	_	dB
1648,0		MHz		20	40	_	dB
3296,0		MHz		20	35	_	dB
3230,0	0000,0			20			


SAW Components							B7845
Low-Loss Filter for Mobile	e Commun	icatio	n			881	,5 MHz
Data Sheet		SN					
Characteristics							
Operating temperature range: Terminating source impedance Terminating load impedance:	:	Z_{S}	= 50 Ω		(balanced)		
				min.	typ.	max.	
Center frequency			f _C	—	881,5	—	MHz
Maximum insertion attenuati 869,0	on 894,0	MHz	α_{max}	—	1,3	1,6	dB
Amplitude ripple (p-p)			Δα				
869,0	894,0	MHz		—	0,6	0,8	dB
Input VSWR							
869,0	894,0	MHz		—	1,6	1,8	
Output VSWR							
869,0	894,0	MHz		—	1,6	1,8	
Attenuation							
	434,0	MHz		45	54		dB
	447,0	MHz		45	52	—	dB
	849,0			30	35	—	dB
	1000,0	MHz		26	29	—	dB
	1738,0			28	38		dB
1738,0	6000,0	MHz		40	46	_	dB
Amplitude balance (S ₃₁ /S ₂₁)							
869,0	894,0	MHz		-1,0	-0,6 0,0	1,0	dB
Phase balance $(\phi(S_{31})-\phi(S_{21})$							
869,0	894,0	MHz		-5	-3,0 1,5	5	degree
Common mode suppression			S _{sc12}				
869,0		MHz		20	26	—	dB
824,0	995,0	MHz		20	26	—	dB
1648,0	1990,0	MHz		22	40	—	dB
3296,0	3980,0	MHz		20	35		dB

Transfer function (narrow band)

Transfer function (wideband)

5

SAW Components		B7845
Low-Loss Filter for Mol	bile Communication	881,5 MHz
Data Sheet	SMD	

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC WT P.O. Box 80 17 09, D-81617 München

© EPCOS AG 2005. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.

